Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Physics
Two coherent sources of intensity ratio âαâ interfere. In interference pattern (Imax-Imin/Imax+Imin)=
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Two coherent sources of intensity ratio ‘$α$’ interfere. In interference pattern $\frac{I_{max}-I_{min}}{I_{max}+I_{min}}=$
MHT CET
MHT CET 2014
A
$\frac{2\alpha}{1+\alpha}$
B
$\frac{2\sqrt{\alpha}}{1+\alpha}$
C
$\frac{2\alpha}{1+\sqrt{\alpha}}$
D
$\frac{1+\alpha}{2\alpha}$
Solution:
$\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }}=\frac{\left(a_{1}+a_{2}\right)^{2}-\left(a_{1}-a_{2}\right)^{2}}{\left(a_{1}+a_{2}\right)^{2}+\left(a_{1}-a_{2}\right)^{2}}$
$\left[\because I_{\max }=\left(a_{1}+a_{2}\right)^{2}, I_{\min }=\left(a_{1}-a_{2}\right)^{2}\right.$
where $a=$ amplitude $]$
$=\frac{4 a_{1} a_{2}}{2\left(a_{1}^{2}+a_{2}^{2}\right)}=\frac{2 a_{1} a_{2}}{a_{1}^{2}+a_{2}^{2}}$
Now, dividing the numerator and denominator by $a_1\, a_{2},$ we get
$\frac{I_{\max }-I_{\min }}{I_{\max }+I_{\min }}=\frac{2}{\left[\frac{a_{1}}{a_{2}}+\frac{a_{2}}{a_{1}}\right]}=\frac{2}{\left[\sqrt{\alpha}+\frac{1}{\sqrt{\alpha}}\right]}=\frac{2 \sqrt{\alpha}}{(\alpha+1)}$