Q.
Two circles are
$S_1 \equiv(x+3)^2+y^2=9 $
$ S_2 \equiv(x-5)^2+y^2=16$
with centres $C_1 \& C_2$
Locus of circle cuts the circle $S_1$ at $B \& C$, then line segment $B C$ subtends an angle on the major arc $B C$ of circle $S_1$ which is
Conic Sections
Solution: