Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Physics
Two bodies of same shape, same size and same radiating power have emissivitys 0.2 and 0.8. The ratio of their temperatures is:
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Two bodies of same shape, same size and same radiating power have emissivitys 0.2 and 0.8. The ratio of their temperatures is:
EAMCET
EAMCET 2005
Thermal Properties of Matter
A
$ \sqrt{3}:1 $
16%
B
$ \sqrt{2}:1 $
61%
C
$ 1:\sqrt{5} $
13%
D
$ 1:\sqrt{8} $
10%
Solution:
Radiating power of a body of area $ {{\text{A}}_{1}}, $ emissivity $ {{e}_{1}} $ and surface temperature $ {{T}_{1}} $ is $ {{P}_{1}}=\sigma {{e}_{1}}T_{1}^{4}{{T}_{1}} $ ?(i) Similarly radiating power of a body of area $ {{A}_{2}}, $ emissivity $ {{e}_{2}} $ and surface temperature $ {{T}_{2}} $ is $ {{P}_{2}}=\sigma {{e}_{2}}T_{2}^{4}{{A}_{2}} $ ?(ii) Given: $ {{P}_{1}}={{P}_{2}} $ and $ {{A}_{1}}={{A}_{2}}, $ $ \sigma {{e}_{1}}T_{1}^{4}{{A}_{1}}=\sigma {{e}_{2}}T_{2}^{4}{{A}_{2}} $ $ \Rightarrow $ $ {{\left( \frac{{{T}_{1}}}{{{T}_{2}}} \right)}^{4}}=\left( \frac{{{e}_{2}}}{{{e}_{1}}} \right)\left( \frac{{{A}_{2}}}{{{A}_{1}}} \right) $ $ \frac{{{T}_{1}}}{{{T}_{2}}}={{\left( \frac{{{e}_{2}}}{{{e}_{1}}} \right)}^{1/4}}.1 $ $ (\because {{A}_{1}}={{A}_{2}}) $ Here $ {{e}_{1}}=0.2,\,{{e}_{2}}=0.8 $ Hence, $ \frac{{{T}_{1}}}{{{T}_{2}}}={{\left( \frac{0.8}{0.2} \right)}^{1/4}}={{\left( \frac{4}{1} \right)}^{1/4}}={{\left( \frac{{{2}^{2}}}{{{1}^{1}}} \right)}^{1/4}} $ $ \frac{{{T}_{1}}}{{{T}_{1}}}={{\left( \frac{2}{1} \right)}^{1/2}}=\sqrt{\frac{2}{1}} $ $ {{T}_{1}}:{{T}_{2}}=\sqrt{2}:1 $