Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Two bodies of same shape, same size and same radiating power have emissivitys 0.2 and 0.8. The ratio of their temperatures is:

EAMCETEAMCET 2005Thermal Properties of Matter

Solution:

Radiating power of a body of area $ {{\text{A}}_{1}}, $ emissivity $ {{e}_{1}} $ and surface temperature $ {{T}_{1}} $ is $ {{P}_{1}}=\sigma {{e}_{1}}T_{1}^{4}{{T}_{1}} $ ?(i) Similarly radiating power of a body of area $ {{A}_{2}}, $ emissivity $ {{e}_{2}} $ and surface temperature $ {{T}_{2}} $ is $ {{P}_{2}}=\sigma {{e}_{2}}T_{2}^{4}{{A}_{2}} $ ?(ii) Given: $ {{P}_{1}}={{P}_{2}} $ and $ {{A}_{1}}={{A}_{2}}, $ $ \sigma {{e}_{1}}T_{1}^{4}{{A}_{1}}=\sigma {{e}_{2}}T_{2}^{4}{{A}_{2}} $ $ \Rightarrow $ $ {{\left( \frac{{{T}_{1}}}{{{T}_{2}}} \right)}^{4}}=\left( \frac{{{e}_{2}}}{{{e}_{1}}} \right)\left( \frac{{{A}_{2}}}{{{A}_{1}}} \right) $ $ \frac{{{T}_{1}}}{{{T}_{2}}}={{\left( \frac{{{e}_{2}}}{{{e}_{1}}} \right)}^{1/4}}.1 $ $ (\because {{A}_{1}}={{A}_{2}}) $ Here $ {{e}_{1}}=0.2,\,{{e}_{2}}=0.8 $ Hence, $ \frac{{{T}_{1}}}{{{T}_{2}}}={{\left( \frac{0.8}{0.2} \right)}^{1/4}}={{\left( \frac{4}{1} \right)}^{1/4}}={{\left( \frac{{{2}^{2}}}{{{1}^{1}}} \right)}^{1/4}} $ $ \frac{{{T}_{1}}}{{{T}_{1}}}={{\left( \frac{2}{1} \right)}^{1/2}}=\sqrt{\frac{2}{1}} $ $ {{T}_{1}}:{{T}_{2}}=\sqrt{2}:1 $