Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Two beams of light of intensity $ {{I}_{1}} $ and $ {{I}_{2}} $ interfere to give an interference pattern. If the ratio of maximum intensity to that of minimum intensity is $ \frac{25}{9} $ , then $ \frac{{{I}_{1}}}{{{I}_{2}}} $ is

KEAMKEAM 2007Wave Optics

Solution:

$ \frac{{{I}_{\max }}}{{{I}_{\min }}}=\frac{25}{9} $ Or $ {{\left( \frac{{{a}_{1}}+{{a}_{2}}}{{{a}_{1}}-{{a}_{2}}} \right)}^{2}}=\frac{25}{9} $ where a denotes amplitude.
Or $ \frac{{{a}_{1}}+{{a}_{2}}}{{{a}_{1}}-{{a}_{2}}}=\frac{5}{3} $
Or $ \frac{{{a}_{1}}}{{{a}_{2}}}=4 $
As, $ {{(amplitude)}^{2}}\propto intensity $
Hence, $ \frac{{{I}_{1}}}{{{I}_{2}}}={{\left( \frac{{{a}_{1}}}{{{a}_{2}}} \right)}^{2}}=16 $