Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Two balls are projected simultaneously in the same vertical plane from the same point with velocities $ {{V}_{1}} $ and $ {{V}_{2}} $ with angles $ {{\theta }_{1}} $ and $ {{\theta }_{2}} $ respectively with the horizontal. If , the path of one ball as seen from the position of other ball is:

EAMCETEAMCET 2005

Solution:

For the ball projected with velocity $ {{V}_{1}} $ at an angle $ {{\theta }_{1}} $ with horizontal line, the horizontal distance covered after t time.
$ {{x}_{1}}={{V}_{1}}\cos {{\theta }_{1}}t $ Similarly, for second ball throw with velocity $ {{V}_{2}} $ at an angle $ {{\theta }_{2}} $ with horizontal, horizontal distance covered after time t. $ {{x}_{2}}={{V}_{2}}\cos {{\theta }_{2}}t $ The vertical distances covered are $ {{y}_{1}}={{V}_{1}}\sin {{\theta }_{1}}t-\frac{1}{2}g{{t}^{2}} $ and $ {{y}_{2}}={{V}_{2}}\sin {{\theta }_{2}}t-\frac{1}{2}g{{t}^{2}} $ $ \therefore $ $ {{x}_{2}}-{{x}_{1}}=({{V}_{2}}\cos {{\theta }_{2}}-{{V}_{1}}\cos {{\theta }_{1}})t $ and $ {{y}_{2}}-{{y}_{1}}=({{V}_{2}}\sin {{\theta }_{2}}-{{V}_{1}}\sin {{\theta }_{1}})t $ $ \therefore $ $ \frac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\frac{{{V}_{2}}\sin {{\theta }_{2}}-{{V}_{1}}\sin {{\theta }_{1}}}{{{V}_{2}}\cos {{\theta }_{2}}-{{V}_{1}}\cos {{\theta }_{1}}} $ but $ {{V}_{1}}\cos {{\theta }_{1}}={{V}_{2}}\cos {{\theta }_{2}} $ $ \therefore $ $ \frac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\frac{{{V}_{2}}\sin {{\theta }_{2}}-{{V}_{1}}\sin {{\theta }_{1}}}{0}=\infty $ $ \Rightarrow $ $ {{x}_{2}}-{{x}_{1}}=0 $ and $ {{y}_{2}}-{{y}_{1}}=\infty $ This means line joining the position of particles after time t will be a straight line and parallel to the y-axis.

Solution Image