Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Two alternating voltage generators produce e.m.f. of the same amplitude $E_{0}$ but with a phase difference of $\pi / 3$. The resultant e.m.f. is

Alternating Current

Solution:

$E_{1}=E_{0} \sin \omega t, E_{2}=E_{0} \sin (\omega t+\pi / 3)$
$E=E_{2}+E_{1}$
$=E_{0} \sin (\omega t+\pi / 3)+E_{0} \sin \omega t$
$=E_{0}[2 \sin (\omega t+\pi / 6) \cos (\pi / 6)]$
$\left[\because \sin A+\sin B=\sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)\right]$
$=\sqrt{3} E_{0} \sin (\omega t+\pi / 6)$