Thank you for reporting, we will resolve it shortly
Q.
Total number of values of $ 'a' $ , so that $ {{x}^{2}}-x-a=0 $ has integral roots, where $ a\in N $ and $ 6\le a\le 100 $ , is equal to
Jharkhand CECEJharkhand CECE 2013
Solution:
$x^{2}-x-a=0, D=1+4 a=$ odd $D$ must be perfect square of some odd integer.
Let $D=(2 \lambda+1)^{2} \Rightarrow 1+4 a=1+4 \lambda^{2}+4 \lambda \Rightarrow a=\lambda(\lambda+1)$,
as $a \in[6,100] \Rightarrow a=6,12,20,30,42,56,72,90$
Thus, ' $a^{\prime}$ can attain 8 different values.