Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. To what depth must a rubber ball be taken in deep sea so that its volume is decreased by $0.1 \%$.
(Take, density of sea water =$10^{3} \, kg$ $m^{-3}$, bulk modulus of rubber =$9\times10^{8}N$ $m^{-2}$, $g=10 \,m$ $s^{-2})$

Mechanical Properties of Solids

Solution:

Let $h$ be the depth at which the rubber ball is taken. Then
$p=h\rho g \quad\ldots\left(i\right)$
By definition of bulk modulus,
$B=-\frac{P}{\Delta V /V}$
The negative sign shows that with increase in pressure, a decrease in volume occurs.
$\therefore \quad$ $P=B \frac{\Delta V}{V}$
Using $\left(i\right)$,
$h\rho g$=$B \frac{\Delta V}{V}$ $\quad$ or $\quad$ $h=\frac{B}{\rho g}$ $\frac{\Delta V}{V}$
Substituting the given values, we get
$h=\frac{9\times10^{8} N\,m^{-2}}{10^{3}kg \,m^{-3}\times10 \,ms^{-2}}$ $\left(\frac{0.1}{100}\right)$ $=90\, m\quad$