Q.
To derive the tangent formula, the following steps are given:
1. $\tan\left(A + B\right) = \frac{\frac{\sin A \cos B}{\cos A \cos B} + \frac{\cos A \sin B}{\cos A \cos B}}{\frac{\cos A \cos B}{\sin A \sin B} + \frac{\sin A \sin B}{\cos A \cos B}}$
2. $\tan\left(A + B\right) = \frac{\sin\left(A + B\right)}{\cos\left(A + B\right)} $
3. $\tan\left(A + B\right) = \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}$
4.$ \tan\left(A + B\right) = \frac{\tan A + \tan B}{1- \tan A \tan B} $
Their correct and proper sequential form to derive the formula is:
Trigonometric Functions
Solution: