Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $TlAl\left(\left(SO\right)_{4}\right)_{2} \, . \, \left(xH\right)_{2}O$ is bcc with edge length $a= \, 1.22 \, nm$ . If the density of the solid is $2.32 \, g/cc$ , then the value of $x$ is
Given: $N_{A}=6\times 10^{23}$
Atomic weight (in $g/mol$ ) $TI=204, \, Al=27, \, S=32, \, O=16, \, H=1$ )

NTA AbhyasNTA Abhyas 2022

Solution:

For any unit cell
$\text{d} \, \text{=} \, \frac{\text{2} \, \text{M}}{\text{a}^{\text{3}} \, \text{N}_{\text{A}}}$ (for $\text{BCC,} \, \text{Z} \, \text{=} \, \text{2}$ )
$2.32=\frac{2 \, \times M}{6 \times 1 0^{23} \times \left(1.22\right)^{3} \times 1 0^{- 21}}$
$\therefore \, M=1264$
So $4 2 3 + \text{x} \left(1 8\right) = 1 2 6 4$
$\text{x} = 4 7$