Thank you for reporting, we will resolve it shortly
Q.
Time taken for an electron to complete one revolution in the Bohr orbit of hydrogen atom is
Structure of Atom
Solution:
By Bohr postulate, $m \upsilon r=n \frac{h}{2 \pi} \, or\, \upsilon=\frac{n h}{2 \pi m r}$
No. of revolutions per sec
$=\frac{Velocity}{Circumference\, of\, the \,orbit}=\frac{\upsilon}{2 \pi r}$
Substituting value of $\upsilon,$ we get
$=\frac{n h}{2 \pi mr}\times\frac{1}{2 \pi r}=\frac{n h}{4 \pi^{2} m r^{2}}$
$\frac{n h}{4 \pi^{2} m r^{2}}$ revolutions completed in 1s
$\therefore \, $ 1 revolution will take $\frac{1}{\frac{n h}{4 \pi^{2} m r^{2}}}=\frac{4 \pi^{2} m r ^{2}}{n h}$