Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Time taken for an electron to complete one revolution in the Bohr orbit of hydrogen atom is

Structure of Atom

Solution:

By Bohr postulate, $m \upsilon r=n \frac{h}{2 \pi} \, or\, \upsilon=\frac{n h}{2 \pi m r}$
No. of revolutions per sec
$=\frac{Velocity}{Circumference\, of\, the \,orbit}=\frac{\upsilon}{2 \pi r}$
Substituting value of $\upsilon,$ we get
$=\frac{n h}{2 \pi mr}\times\frac{1}{2 \pi r}=\frac{n h}{4 \pi^{2} m r^{2}}$
$\frac{n h}{4 \pi^{2} m r^{2}}$ revolutions completed in 1s
$\therefore \, $ 1 revolution will take $\frac{1}{\frac{n h}{4 \pi^{2} m r^{2}}}=\frac{4 \pi^{2} m r ^{2}}{n h}$