Thank you for reporting, we will resolve it shortly
Q.
There are 3 straight lines, 4 circles and 5 parabolas in xy plane. Maximum number
of their intersection point, is
Permutations and Combinations
Solution:
Line v/s line: ${ }^3 C _2 \cdot 1=3$
Circle v/s circle: ${ }^4 C _2 \cdot 2=12$
Parabola v/s Parabola: ${ }^5 C _2 \cdot 4=40$
Line v/s Circle: ${ }^3 C _1 \cdot{ }^4 C _1 \cdot 2=24$
Line v/s Parabola: ${ }^3 C _1 \cdot{ }^5 C _1 \cdot 2=30$
Circle v/s Parabola: ${ }^4 C _1 \cdot{ }^5 C _1 \cdot 4=80$
Total $= 189$