Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The x-t graph of a particle undergoing simple harmonic motion is shown below. The acceleration of the particle at $t=\frac{2}{3}s$ is



Question

NTA AbhyasNTA Abhyas 2020Oscillations

Solution:

Using the general equation of $SHM$
$x=Asin \omega t$
as per graph $A = 1 \,cm, T = 8 \,sec $
$\Rightarrow w=\frac{2 \pi }{T}=\frac{\pi }{4} \\ x=sin\frac{\pi }{4}t$ acceleration $a=\frac{d^{2} x}{d t^{2}}$
${l}\Rightarrow a=\frac{-\pi^2}{16} \sin \frac{\pi}{4} t $
$ \text { at } \mathrm{t}=\frac{2}{3}, a=\frac{-\pi^2}{16} \sin \left(\frac{\pi}{4} \cdot \frac{2}{3}\right)=\frac{-\pi^2}{16} \cdot \sin \left(\frac{\pi}{6}\right) $
$\Rightarrow a=\frac{-\pi^2}{16} \times \frac{1}{2}=\frac{-\pi^2}{32} \mathrm{~cm} / \mathrm{s}^2$