Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The wavelength of the $K_{\alpha}$ line for an element of atomic number $43$ is $\lambda$. Then the wavelength of the $K_{\alpha}$ line for an element of atomic number $29$, is

BHUBHU 2008Dual Nature of Radiation and Matter

Solution:

Moseley's law is given by
$\sqrt{v}=a(Z-b)$
For $K_{\alpha}$ line, $b=1$
$\sqrt{v}=a(Z-1)$
Squaring, we get
$v=a^{2}(Z-1)^{2}$
or$\frac{c}{\lambda}=a^{2}(Z-1)^{2}$
or$\lambda=\frac{c}{a^{2}(Z-1)^{2}}$
For $Z=43$, wavelength $=\lambda$
$\therefore \lambda=\frac{c}{a^{2}(43-1)^{2}}$
or $\lambda=\frac{c}{a^{2}(42)^{2}}\,\,\,...(i)$
For $Z=29$, wavelength $=\lambda'$
$\lambda'=\frac{c}{a^{2}(29-1)^{2}}$
or $\lambda'=\frac{c}{a^{2}(28)^{2}}\,\,\,...(ii)$
Dividing Eq. (ii) by Eq. (i), we get
$ \frac{\lambda'}{\lambda}=\left(\frac{42}{28}\right)^{2}=\left(\frac{3}{2}\right)^{2} $
$\therefore \lambda'=\left(\frac{9}{4}\right) \lambda$