Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The wavelength of the first spectral line in the Balmer series of the hydrogen atom is $6561 \, \overset{^\circ }{A}$ . The wavelength of the second spectral line in the Balmer series of singly ionized helium atom is

NTA AbhyasNTA Abhyas 2020Atoms

Solution:

Solution
For hydrogen or hydrogen type atoms
$\frac{1}{\lambda }=\left(R Z\right)^{2}\left(\frac{1}{n_{f}^{2}} - \frac{1}{n_{i}^{2}}\right)$
In the transition from $n_{i} \rightarrow \, n_{f}$
$\therefore \, \lambda \, \propto \, \frac{1}{Z^{2} \left(\frac{1}{n_{f}^{2}} - \frac{1}{n_{i}^{2}}\right)}$
$\therefore \quad \frac{\lambda_2}{\lambda_1}=\frac{Z_1^2\left(\frac{1}{n_f^2}-\frac{1}{n_i^2}\right)_1}{Z_2^2\left(\frac{1}{n_f^2}-\frac{1}{n_i^2}\right)_2}$
$\lambda_2=\frac{\lambda_1 Z_1^2\left(\frac{1}{n_f^2}-\frac{1}{n_i^2}\right)_1}{Z_2^2\left(\frac{1}{n_f^2}-\frac{1}{n_i^2}\right)_2}$
Substituting the values, we have
$ \, \, =\frac{\left(\right. 6561 \left.\right) \left(1\right)^{2} \left(\frac{1}{2^{2}} - \frac{1}{3^{2}}\right)}{\left(2\right)^{2} \left(\frac{1}{2^{2}} \, - \, \frac{1}{4^{2}}\right)}$ $=1215\overset{^\circ }{A}$