Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Physics
The wavelength of red light from He-Ne laser is 633 nm in air but 474 nm in the aqueous humor inside the eye ball. Then the speed of red light through the aqueous humor is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The wavelength of red light from $He-Ne$ laser is $ 633\, nm $ in air but $ 474 $ nm in the aqueous humor inside the eye ball. Then the speed of red light through the aqueous humor is
KEAM
KEAM 2008
Ray Optics and Optical Instruments
A
$ 3\times {{10}^{8}}m/s $
18%
B
$ 1.34\times {{10}^{8}}m/s $
24%
C
$ 2.25\times {{10}^{8}}m/s $
24%
D
$ 2.5\times {{10}^{8}}m/s $
24%
E
$ 2.75\times {{10}^{8}}m/s $
24%
Solution:
$ \frac{Speed\text{ }of\text{ }light\text{ }in\text{ }air}{Speed\text{ }of\text{ }light\text{ }in\text{ }aqueous\text{ }humor} $
$ =\frac{Wavelength\text{ }of\text{ }light\text{ }in\text{ }air}{Wavelength\text{ }of\text{ }light\text{ }in\text{ }aqueous\text{ }humor} $
$ \Rightarrow $ $ \frac{{{v}_{1}}}{{{v}_{2}}}=\frac{{{\lambda }_{1}}}{{{\lambda }_{2}}} $ Or
$ {{v}_{2}}=\frac{{{\lambda }_{2}}}{{{\lambda }_{1}}}\times {{v}_{1}}=\frac{474}{633}\times 3\times {{10}^{8}} $
$ =2.25\times {{10}^{8}}m/s $