Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The wavelength of maximum intensity of radiation emitted by a star is $289.8\, nm$. The radiation intensity of the star is
(Stefans constant $= 5.67 \times 10^{-8}\, W\, m^{-2}\, K^{-4}$, Wien's constant $b = 2898 \, \mu m \,K$)

Thermal Properties of Matter

Solution:

According to Wien’s displacement law,
$\lambda_{max}\,T=b$
$ \therefore T=\frac{b}{\lambda_{max}}=\frac{2898\,\mu m\,K}{289.8\,nm}$
$=\frac{2898 \times10^{-6}\,m\,K}{289.8 \times10^{-9}\,m}$
According to Stefan Boltzmann law,
Radiation intensity, $E=\sigma T^{4}$
$E=\left(5.67 \times10^{-8}\,W\,m^{-2}\,K^{-4}\right)\left(10^{4}\,K\right)^{4}$
$=5.67 \times10^{8}\,W\,m^{-2}$