Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The wavelength of light from the spectral emission line of sodium is $589 \,nm$. Find the kinetic energy at which
(i) an electron and
(ii) a neutron would have the same de-Broglie wavelength.

Dual Nature of Radiation and Matter

Solution:

Given, wavelength of light $=589 \,nm =589 \times 10^{-9} \, m$
Mass of electron, $m_{e}=9.1 \times 10^{-31} \,kg$
Mass of neutron, $m_{n}=1.67 \times 10^{-27} \, kg$
Planck's constant, $h=6.62 \times 10^{-34} \, J - s$
(i) Using of formula, $\lambda=\frac{h}{\sqrt{2 KEm _{e}}}$
Kinetic energy of electron,
$KE _{e} =\frac{h^{2}}{2 \lambda^{2} m_{e}}=\frac{\left(6.63 \times 10^{-34}\right)^{2}}{2 \times\left(589 \times 10^{-9}\right)^{2} \times 9.1 \times 10^{-31}}$
$=6.96 \times 10^{-25} \,J$
(ii) Kinetic energy of neutron
$KE _{n} =\frac{h^{2}}{2 \lambda^{2} m_{n}}=\frac{\left(6.63 \times 10^{-34}\right)^{2}}{2 \times\left(589 \times 10^{-9}\right)^{2} \times 1.66 \times 10^{-27}} $
$=3.81 \times 10^{-28} \, J$