Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The wavelength $\lambda_{m}=5.5 \times 10^{-7} m$ corresponds to a temperature of the sun of $5500\, K$. If the furnace has wavelength $\lambda_{m}$ equal to $11 \times 10^{-7} m$, then temperature of furnace is

Thermal Properties of Matter

Solution:

According to Wien's displacement law,
$\lambda_{m} T=b $ or $ \lambda_{m} \propto \frac{1}{T}\,\,\,...(i)$
where, $b$ is Wien's constant, whose value is $2.9 \times 10^{-3} \,mK$
Using the relation given by Eq. (i), we get
$\frac{\left(\lambda_{m}\right)_{s}}{\left(\lambda_{m}\right)_{f}}=\frac{T_{f}}{T_{s}}$
or $ T_{f}=T_{s} \times \frac{\left(\lambda_{m}\right)_{S}}{\left(\lambda_{m}\right)_{f}}$
$=5500 K \times \frac{\left(5.5 \times 10^{-7} m \right)}{\left(11 \times 10^{-7} m \right)}=2750\, K$