Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The velocity vector $v$ and displacement vector $x$ of a particle executing SHM are related as $\frac{v d v}{d x}=-\omega^{2} X$ with the initial condition $V=v_{0}$ at $x=0$. The velocity $v$, when displacement is $X$, is

AIIMSAIIMS 2015

Solution:

Given,
$v \frac{d v}{d x}=-\omega^{2} x$
On integrating within the limit
$ \int\limits_{V_{0}}^{V} v d v =\int\limits_{0}^{x}-\omega^{2} x d x$
$\Rightarrow \left[\frac{v^{2}}{2}\right]_{V_{0}}^{v}=-\omega^{2}\left[\frac{x^{2}}{2}\right]_{0}^{x} $
$\Rightarrow v^{2}-v_{0}^{2} =-\omega^{2} x^{2} $
$\Rightarrow v=\sqrt{v_{0}^{2}-\omega^{2} x^{2}}$