Q.
The velocity-time graph of a particle in one-dimensional motion is shown in figure. Which of the following formulae are correct for describing the motion of the particle over the time interval $t_{1}$ to $t_{2} .$
(i) $x\left(t_{2}\right)=x\left(t_{1}\right)+v\left(t_{1}\right)\left(t_{2}-t_{1}\right)+\frac{1}{2} a\left(t_{2}-t_{1}\right)^{2}$
(ii) $v\left(t_{2}\right)=v\left(t_{1}\right)+a\left(t_{2}-t_{1}\right)$
(iii) $v_{ av }=\left[\frac{x\left(t_{2}\right)-x\left(t_{1}\right)}{\left(t_{2}-t_{1}\right)}\right]$
(iv) $a_{ av }=\frac{\left[v\left(t_{2}\right)-v\left(t_{1}\right)\right]}{\left(t_{2}-t_{1}\right)}$
(v) $x\left(t_{2}\right)=x\left(t_{1}\right)+v_{ av }\left(t_{2}-t_{1}\right)+\frac{1}{2} a_{ av }\left(t_{2}-t_{1}\right)^{2}$
(vi) $x\left(t_{2}\right)-x\left(t_{1}\right)=$ Area under $v-t$ curve bounded by the $t$ -axis and the dotted line shown
Motion in a Straight Line
Solution: