Q.
The velocity of a particle which starts from rest is given by the following table.
t (in second)
0
2
4
6
8
10
v (in m/s)
0
12
16
20
35
60
The total distance travelled (in metre) by the particles in $10\, s$, using Trapezoidal rule is given by
t (in second) | 0 | 2 | 4 | 6 | 8 | 10 |
v (in m/s) | 0 | 12 | 16 | 20 | 35 | 60 |
EAMCETEAMCET 2009
Solution:
Given table is
t
0
2
4
6
8
10
v
0
12
16
20
35
60
Here, $h=\frac{10-0}{5}=2$
$\therefore $ Total distance $=\frac{h}{2}\left[f\left(x_{0}\right)+2\left\{f\left(x_{1}\right)+f\left(x_{2}\right)\right.\right.$
$\left.\left.+f\left(x_{3}\right)+f\left(x_{4}\right)\right\}+f\left(x_{5}\right)\right]$
$=\frac{2}{2}[0+2(12+16+20+35)+60]$
$=166+60=226$
t | 0 | 2 | 4 | 6 | 8 | 10 |
v | 0 | 12 | 16 | 20 | 35 | 60 |