Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The vector sum of two forces is perpendicular to their vector differences. In that case, the forces

AIPMTAIPMT 2003Motion in a Plane

Solution:

Given : $\left(\vec{F}_{1}+\vec{F}_{2}\right) \perp\left(\vec{F}_{1}-\vec{F}_{2}\right)$
$\therefore\left(\vec{F}_{1}+\vec{F}_{2}\right) \cdot\left(\vec{F}_{1}-\vec{F}_{2}\right)=0 $
$F_{1}^{2}-F_{2}^{2}-\vec{F}_{1} \cdot \vec{F}_{2}+\vec{F}_{2} \cdot \vec{F}_{1}=0 $
$\Rightarrow F_{1}^{2}=F_{2}^{2}$
i.e. $F_{1}, F_{2}$ are equal to each other in magnitude.