Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The variance of the following continuous frequency distribution is
Class Interval 0-10 10-20 20-30 30-40
Frequency 2 3 4 1

AP EAMCETAP EAMCET 2019

Solution:

Given
Class Interval Frequency $(f_{i})$ $x_{i}$ $x_{i}f_{i}$ $\left(\bar{x}-x_{i}\right)^{2}$ $f_{i}\left(\bar{x}-x_{i}\right)^{2}$
0-10 2 5 10 196 392
10-20 3 15 45 16 48
20-30 4 25 100 36 144
30-40 1 35 35 256 256
$N=\Sigma f_{i}=10$ $\Sigma x_{i} f_{i}=190$ $\Sigma f_{i}\left(\bar{x}-x_{i}\right)^{2}=840$

$\because \bar{x}=\frac{\sum x_{i} f_{i}}{N}=\frac{190}{10}=19$
$\therefore $ Variance $(\sigma)^{2}=\frac{1}{N} \Sigma f_{i}\left(\bar{x}-x_{i}\right)^{2}$
$=\frac{1}{10}(840)=84$