Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The variance of first 100 odd natural numbers is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The variance of first $100$ odd natural numbers is
NTA Abhyas
NTA Abhyas 2022
A
$2222$
B
$3333$
C
$4444$
D
$5555$
Solution:
Variance $=\frac{1^{2} + 3^{2} + 5^{2} + \ldots . . + \left(199\right)^{2}}{100}-\left(\frac{1 + 3 + 5 + \ldots . . + 199}{100}\right)^{2}$ Sum $=\displaystyle \sum _{n = 1}^{n}\left(2 n - 1\right)^{2}=4\Sigma n^{2}-4\Sigma n+n=\frac{4 n \left(n + 1\right) \left(2 n + 1\right)}{6}-\frac{4 n \left(n + 1\right)}{2}+n$
Put $n=100$
$=\frac{4 \times 100 \times 101 \times 201}{6}-2\times 100\times 101+100$
$=100\left(\frac{2 \times 101 \times 201}{3} - 2 \times 101 + 1\right)=100\left(2 \times 6767 - 202 + 1\right)$
$=100\left(13534 - 201\right)=100\times 13333=1333300$
Variance $=\frac{1333300}{100}-\left(100\right)^{2}=13333-10000=3333$