Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The values of $x$ in the interval $[0, \pi]$ such that $\sin 2 x=\frac{\sqrt{3}}{2}$ are

KEAMKEAM 2021

Solution:

$\sin 2 x=\frac{\sqrt{3}}{2} \forall x \in[0, \pi]$
$\text { If } x \in[0, \pi], 2 x \in[0,2 \pi] $
$ \sin 2 x=\sin \frac{\pi}{3} \text { or } \sin 2 x=\sin \left(\pi-\frac{\pi}{3}\right)$
$ \Rightarrow 2 x=\frac{\pi}{3}, \frac{2 \pi}{3}$
$x=\frac{\pi}{6}, \frac{\pi}{3}$