Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The values of $ x $ and $ y $ such that $ y $ satisfy the equation $ (x,\,\,\,y\,\,\,\in $ real numbers) $ {{x}^{2}}-xy+{{y}^{2}}-4x-4y+16=0 $ is

Jharkhand CECEJharkhand CECE 2007

Solution:

Given, $ {{x}^{2}}-xy+{{y}^{2}}-4x-4y+16=0 $
$ \Rightarrow $ $ {{x}^{2}}-(y+4)x+{{y}^{2}}-4y+16=0 $
For real $ x,\,\,{{(y+4)}^{2}}-4({{y}^{2}}-4y+16)\ge 0 $
$ \Rightarrow $ $ -3{{y}^{2}}+24y-48=0 $
$ \Rightarrow $ $ {{y}^{2}}-8y+16=0 $
$ \Rightarrow $ $ {{(y-4)}^{2}}=0\Rightarrow y=4 $
$ \therefore $ $ x=4 $ $ \Rightarrow $ $ (x,\,\,y)=(4,\,\,4) $