Q.
The values of $\alpha$ for which the vector $\vec{a}=\hat{i}+3 \hat{j}+\left(sin\,2\alpha\right)\hat{k}$
makes an obtuse angle with the z-axis and the vectors
$\vec{b}=\left(tan \, \alpha\right) \hat{i}-\hat{j}+2 \sqrt{Sin \,\frac{\alpha}{2}}\hat{k}$
$and \, \vec{c}=\left(tan\, \alpha\right)\hat{i}+\left(tan\,\alpha\right) \hat{j}-3 \sqrt{cos \, ec \frac{\alpha}{2}} \hat{k}$
are mutually orthogonal are
Vector Algebra
Solution: