Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The values of a for which f(x)=x3+3(a-7) x2+3(a2-9) x-1, have a positive point of maxima is,
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The values of a for which $f(x)=x^3+3(a-7) x^2+3\left(a^2-9\right) x-1$, have a positive point of maxima is,
Application of Derivatives
A
$(-\infty,-3)$
B
$\left(3, \frac{29}{7}\right)$
C
$(-\infty,-3) \cup(3, \infty)$
D
$(-\infty,-3) \cup\left(3, \frac{29}{7}\right)$
Solution:
Here $f^{\prime}(x)=3 x^2+6(a-7) x+3\left(a^2-9\right)=0$
$\Rightarrow x=7-a \pm \sqrt{58-14 a}, x_1=7-a+\sqrt{58-14 a}, x_2=7-a-\sqrt{58-14 a}$
$58-14 a>0 \Rightarrow 14 a<58 \Rightarrow a<\frac{29}{7}$
$f^{\prime \prime}(x)=6 x+6(a-7), f^{\prime \prime}\left(x_2\right)<0 $
$\Rightarrow a t x=a_2, f(x)$ has a maxima
$\therefore x_2>0 \Rightarrow 7-a-\sqrt{58-14 a}>0, \sqrt{58-14 a}<7-a$
$\Rightarrow 58-14 a<(7-a)^2 \Rightarrow a^2-9>0$
$\Rightarrow a \in(-\infty,-3) \cup(3, \infty) \& a<\frac{29}{7}$
$\therefore a \in(-\infty,-3) \cup\left(3, \frac{29}{7}\right)$