Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $x$ in $\left(0, \frac{\pi}{2}\right)$ satisfying the equation $\sin x \cos x=\frac{1}{4}$ is

Trigonometric Functions

Solution:

$2 \sin x \cos x=\frac{1}{2}$
$\Rightarrow \sin 2 x=\frac{1}{2}=\sin \frac{\pi}{6}$
$\Rightarrow 2 x=n \pi+(-1)^n \frac{\pi}{6}$
$\Rightarrow x=\frac{n \pi}{2}+(-1)^n \frac{\pi}{12}$
For $ x \in\left(0, \frac{\pi}{2}\right)$
$\therefore x=\frac{\pi}{12} (\because n=0)$