Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of The value of (2( cos 75° + i sin 75°)/0.2( cos 30° + i sin 30°)) is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The value of The value of $\frac{2(\cos \, 75^{\circ} + i \, \sin \, 75^{\circ})}{0.2(\cos \, 30^{\circ} + i \, \sin \, 30^{\circ})}$ is
KEAM
KEAM 2018
A
$\frac{5}{\sqrt{2}} (1 + i)$
20%
B
$\frac{10}{\sqrt{2}} (1 + i)$
38%
C
$\frac{10}{\sqrt{2}} ( 1 - i ) $
28%
D
$\frac{5}{\sqrt{2}} (1 - i)$
8%
E
$\frac{1}{\sqrt{2}} (1 + i)$
8%
Solution:
$\frac{2\left(\cos 75^{\circ}+i \sin 75^{\circ}\right)}{0.2\left(\cos 30^{\circ} i \sin 30^{\circ}\right)}= \frac{2 \cdot e^{i 75^{\circ}}}{0.2 \cdot e^{i 30^{\circ}}}$
$\left(\because \cos \theta +i \sin \theta=e^{i \theta}\right)$
$=10 \cdot e^{i 75^{\circ}} \cdot e^{-i 30^{\circ}}$
$=10 \cdot e^{i 45^{\circ}}$
$=10\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)$
$\left(e^{i \theta}=\cos \theta +i \sin \theta\right)$
$= 10\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)$
$=\frac{10}{\sqrt{2}}(1+i)$