Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of the integral $ \int_{-\pi /2}^{\pi /2}{\sqrt{1-{{\cos }^{2}}\theta }}\,\,d\theta $ is equal to

J & K CETJ & K CET 2012Integrals

Solution:

Let $ I=\int_{-\pi /2}^{\pi /2}{\sqrt{1-{{\cos }^{2}}\theta }\,d\theta } $
$ =\int_{-\pi /2}^{\pi /2}{|\sin \theta |\,\,d\theta } $
$ =2\int_{0}^{\pi /2}{\sin \theta \,\,\,d\theta } $
$ =2[-\cos \,\theta ]_{0}^{\pi /2} $
$ =2\left( -\cos \frac{\pi }{2}+\cos \,{{0}^{o}} \right) $
$ =2(1)=2 $