Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of the integral $\int\limits_{0}^{4} \frac{d x}{1+x^{2}}$ obtained by using Trapezoidal rule with $h=1$ is

EAMCETEAMCET 2012

Solution:

Given integration is $\int\limits_{0}^{4} \frac{d x}{1+x^{2}}$ and $h=1$.
$X$ 0 1 2 3 4
$f(x)$ 1 $\frac{1}{2}$ $\frac{1}{5}$ $\frac{1}{10}$ $\frac{1}{17}$

By using Trapezoidal rule,
$ \int\limits_{0}^{4} f(x) d x =\frac{h}{2}\left[\left(y_{0}+y_{4}\right)+2\left(y_{1}+y_{2}+y_{3}\right)\right] $
$=\frac{1}{2}\left[\left(1+\frac{1}{17}\right)+2\left(\frac{1}{2}+\frac{1}{5}+\frac{1}{10}\right)\right] $
$=\frac{1}{2}\left[\frac{18}{17}+2\left(\frac{5+2+1}{10}\right)\right] $
$=\frac{1}{2}\left(\frac{18}{17}+\frac{8}{5}\right)=\frac{1}{2}\left(\frac{90+136}{85}\right)$
$=\frac{1}{2}\left(\frac{226}{85}\right)=\frac{113}{85}$