Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of the integral $\displaystyle \int_2^4$ $\left(\frac{\log\, t }{t}\right) dt$ is equal to

KEAMKEAM 2014Integrals

Solution:

Let $I=\displaystyle\int_{2}^{4}\left(\frac{\log t}{t}\right) d t$
Let $\log\, t=z $
$\Rightarrow \frac{1}{t} d t=d z$
$\therefore I=\displaystyle\int_{\log 2}^{\log 4} Z\, d z=\left[\frac{z^{2}}{2}\right]_{\log 2}^{\log 4}$
$=\frac{1}{2}\left[(\log 4)^{2}-(\log 2)^{2}\right]$
$=\frac{1}{2}\left[(2 \log 2)^{2}-(\log 2)^{2}\right]$
$=\frac{3}{2}(\log 2)^{2}$