Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of the expression $\frac{\log _8(1+2 \cos 2 \theta)^{3 / 4}+\log _2(\sin \theta)^{1 / 4}}{\log _{16}(\operatorname{cosec} 3 \theta)}$ (whenever defined) is equal to

Continuity and Differentiability

Solution:

$E =\frac{\frac{1}{4} \log _2(1+2 \cos 2 \theta)+\frac{1}{4} \log _2 \sin \theta}{-\frac{1}{4} \log _2 \sin 3 \theta} $
$=\frac{\log _2(\sin \theta+2 \cos 2 \theta \sin \theta)}{-\log _2 \sin 3 \theta}=\frac{\log _2(\sin \theta+\sin 3 \theta-\sin \theta)}{-\log _2 \sin 3 \theta}=-1$
Now,
(A) $\log _7 6 \cdot \log _6 7=1$
(B) $(\sqrt{2}+1) \cos \frac{5 \pi}{8}=(\sqrt{2}+1)(-(\sqrt{2}-1))=-1$
(D) $(\sqrt{2}-1) \tan \frac{3 \pi}{8}=(\sqrt{2}-1)(\sqrt{2}+1)=1$
Hence, options (B) and (C) are correct