Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of the expression $\cos ^{4} \frac{\pi}{8}+\cos ^{4} \frac{3 \pi}{8}+\cos ^{4} \frac{5 \pi}{8}+\cos ^{4} \frac{7 \pi}{8}=$

Solution:

$\cos ^{4} \frac{\pi}{8}+\cos ^{4} \frac{3 \pi}{8}+\cos ^{4} \frac{5 \pi}{8}+\cos ^{4} \frac{7 \pi}{8}$
$=2\left(\cos ^{4} \frac{\pi}{8}+\sin ^{4} \frac{\pi}{8}\right)=2\left[\left(\cos ^{2} \frac{\pi}{8}+\sin ^{2} \frac{\pi}{8}\right)^{2}-2 \cos ^{2} \frac{\pi}{8} \sin ^{2} \frac{\pi}{8}\right]$
$=2\left(1-\frac{1}{4}\right)=\frac{3}{2}$