Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of the expression $\frac{1}{1+\sqrt{2}+\sqrt{3}}+\frac{1}{1-\sqrt{2}+\sqrt{3}}+\frac{1}{1+\sqrt{2}-\sqrt{3}}+\frac{1}{1-\sqrt{2}-\sqrt{3}}$, is

Sequences and Series

Solution:

$\frac{1}{1+(\sqrt{2}+\sqrt{3})}+\frac{1}{1-(\sqrt{2}+\sqrt{3})}+\frac{1}{1-(\sqrt{2}-\sqrt{3})}+\frac{1}{1+(\sqrt{2}-\sqrt{3})}$
$=\frac{1-(\sqrt{2}+\sqrt{3})+1+\sqrt{2}+\sqrt{3}}{1-(\sqrt{2}+\sqrt{3})^2}+\frac{1+\sqrt{2}-\sqrt{3}+1-\sqrt{2}+\sqrt{3}}{1-(\sqrt{2}-\sqrt{3})^2}$
$=\frac{2}{-4-2 \sqrt{6}}+\frac{2}{-4+2 \sqrt{6}}=\frac{1}{-2-\sqrt{6}}+\frac{1}{-2+\sqrt{6}}=\frac{-2+\sqrt{6}-2-\sqrt{6}}{4-6}=\frac{-4}{-2}=2 $