Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of the $\displaystyle\lim _{x \rightarrow 0}\left(\frac{a^{x}+b^{x}+c^{x}}{3}\right)^{2 / x}$, $(a, b, c>0)$ is

ManipalManipal 2014

Solution:

Let $y=\displaystyle\lim _{x \rightarrow 10}\left(\frac{a^{x}+b^{x}+c^{x}}{3}\right)^{2 / x}$
$\Rightarrow \log y=\displaystyle\lim _{x \rightarrow 10} \frac{2}{x} \log \left(\frac{a^{x}+b^{x}+c^{x}}{3}\right)$
$=\displaystyle\lim _{x \rightarrow 10} \frac{\log \left(a^{x}+b^{x}+c^{x}\right)-\log 3}{x}$
$\Rightarrow \log y=\log (a b c)^{2 / 3} $ (by L-Hospital's rule)
$\Rightarrow y=(a b c)^{2 / 3}$