Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of the definite integral $\int\limits_0^{\pi / 2}(\sin x+\cos x) \cdot \sqrt{\frac{e^x}{\sin x}} d x$ equals

Integrals

Solution:

$ I=\int\limits_0^{\pi / 2} \frac{e^x(\sin x+\cos x)}{\sqrt{e^x \sin x}} d x$
$\text { put } e^x \sin x=t^2 \Rightarrow e^x(\sin x+\cos x) d x=2 t d t $
$\therefore \left.I=2 \int\limits_0^{\pi / 4} d t=2 t\right]_0^{e^{\pi / 4}}=2 e^{\pi / 4}=2 \sqrt{e^{\pi / 2}} $