Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of the definite integral $\int\limits_0^\pi\left((1-x \sin 2 x) e^{\cos ^2 x}+(1+x \sin 2 x) e^{\sin ^2 x}\right) d x$ is equal to

Integrals

Solution:

$\int\left(f(x)+x f^{\prime}(x)\right) d x=x f(x)+C$
So, $\left.\quad I=x\left(e^{\cos ^2 x}+e^{\sin ^2 x}\right)\right]_0^\pi=\pi(e+1)$.