Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of the definite integral $\int\limits_0^{\infty} \frac{d x}{\left(1+x^a\right)\left(1+x^2\right)}(a>0)$ is

Integrals

Solution:

put $x=\tan \theta$
$I =\int\limits_0^{\pi / 2} \frac{ d \theta}{1+(\tan \theta)^{ a }}=\int\limits_0^{\pi / 2} \frac{(\cos \theta)^{ a }}{(\sin \theta)^{ a }+(\cos \theta)^{ a }} d \theta \Rightarrow I =\frac{\pi}{4}$