Thank you for reporting, we will resolve it shortly
Q.
The value of the definite integral, $\int\limits_0^{100} \frac{ x }{ e ^{ x ^2}} dx$ is equal to
Integrals
Solution:
put $x^2=t ; x d x=\frac{d t}{2}$
$\left.I =\frac{1}{2} \int\limits_0^{10^4} \frac{ dt }{ e ^{ t }}=-\frac{1}{2} e ^{- t }\right]_0^{10^4}=\frac{1}{2}\left(1- e ^{-10^4}\right)$