Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $\tan \frac{\pi}{8}$ is equal to

KCETKCET 2016Trigonometric Functions

Solution:

We know that, $\tan \theta=\frac{\sin\, 2 \theta}{1+\cos\, 2 \theta}$
$\Rightarrow \tan \frac{\pi}{8}=\frac{\sin\, 2(\pi / 8)}{1+\cos \,2(\pi / 8)} $
$\Rightarrow \tan \frac{\pi}{8}=\frac{\sin (\pi / 4)}{1+\cos (\pi / 4)}$
$\therefore \tan \frac{\pi}{8}=\frac{\frac{1}{\sqrt{2}}}{1+\frac{1}{\sqrt{2}}}$
$=\frac{1}{\sqrt{2}+1}$