Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The value of ( tan 70°- tan 20°/ tan 50°)=
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The value of $\frac{\tan\, 70^{\circ}-\tan \,20^{\circ}}{\tan \,50^{\circ}}=$
Trigonometric Functions
A
1
55%
B
2
19%
C
3
6%
D
0
21%
Solution:
$\frac{\tan \,70^{\circ}-\tan \,20^{\circ}}{\tan \,50^{\circ}}=\frac{\frac{\sin \,70^{\circ}}{\cos\, 70^{\circ}}-\frac{\sin \,20^{\circ}}{\cos \,20^{\circ}}}{\frac{\sin \,50^{\circ}}{\cos \,50^{\circ}}}$
$\frac{\frac{sin \,70^{\circ} cos \,20^{\circ}-cos\, 70^{\circ} sin\, 20^{\circ}}{cos \,70^{\circ}cos\, 20^{\circ}}}{\frac{sin \,50^{\circ}}{cos\, 50^{\circ}}}$
$=\frac{2}{2} \times \frac{\sin \left(70^{\circ}-20^{\circ}\right) \cos 50^{\circ}}{\cos 70^{\circ} \cos 20^{\circ} \sin 50^{\circ}}=\frac{2 \sin 50^{\circ} \cos 50^{\circ}}{2 \cos 70^{\circ} \cos 20^{\circ} \sin 50^{\circ}}$
$=\frac{2 \cos 50^{\circ}}{\cos 90^{\circ}+\cos 50^{\circ}}=\frac{2 \cos 50^{\circ}}{0+\cos 50^{\circ}}=2$