Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $ \tan {{1}^{o}}\tan {{2}^{o}}\tan {{3}^{o}}....tan{{89}^{o}} $ is equal to

Jharkhand CECEJharkhand CECE 2007

Solution:

Given $ \tan {{1}^{o}}\tan {{2}^{o}}\tan {{3}^{o}}....\tan {{89}^{o}} $
Now, $ \tan {{89}^{o}}= $ of $ \tan (90-1)=\cot {{1}^{o}} $
$ \tan {{88}^{o}}=\cot {{2}^{o}} $ and so on.
$ \therefore $ $ \tan {{1}^{o}}\tan {{2}^{o}}.....\tan {{89}^{o}} $
$ =(\tan {{1}^{o}}\cot {{1}^{o}})(tan{{2}^{o}}\cot {{2}^{o}}).....tan{{45}^{o}} $
$ 1\cdot 1=1 $