Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $\tan \left(\frac{1}{2} \cot ^{-1}(3)\right)$ equals

Inverse Trigonometric Functions

Solution:

Let $\cot ^{-1} 3=\theta \Rightarrow \cot \theta=3 \Rightarrow \cos \theta=\frac{3}{\sqrt{10}}$
now $\tan ^2\left(\frac{\theta}{2}\right) =\frac{1-\cos \theta}{1+\cos \theta}=\frac{1-\frac{3}{\sqrt{10}}}{1+\frac{3}{\sqrt{10}}}=\frac{\sqrt{10}-3}{\sqrt{10}+3}=\frac{1}{(\sqrt{10}+3)^2} $
$\tan \left(\frac{\theta}{2}\right) \left.=(10+\sqrt{3})^{-1} \text { as } \tan \left(\frac{\theta}{2}\right)>0\right]$