Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $\tan \left(\frac{1}{2} \cos ^{-1} \frac{\sqrt{5}}{3}\right)$ is

Inverse Trigonometric Functions

Solution:

Let $\cos ^{-1} \frac{\sqrt{5}}{3}=\theta$, then $0<\theta<\frac{\pi}{2}$ and $\cos \theta=\frac{\sqrt{5}}{3}$
$\therefore \sin \theta=\sqrt{1-\cos ^{2} \theta}=\frac{2}{3}$
So, $\tan \left[\frac{1}{2} \cos ^{-1} \frac{\sqrt{5}}{3}\right]=\tan \frac{\theta}{2}=\frac{1-\cos \theta}{\sin \theta}=\frac{3-\sqrt{5}}{2}$