Thank you for reporting, we will resolve it shortly
Q.
The value of $\sin 2 x$ is equal to $\left(\right.$ where, $\left.x \neq n \pi+\frac{\pi}{2}\right)$
Trigonometric Functions
Solution:
We have, $\sin (x+y)=\sin x \cos y+\cos x \sin y$
On replacing $y$ by $x$, we get
$ \sin 2 x=2 \sin x \cos x$
Again, $ \sin 2 x=\frac{2 \sin x \cos x}{\cos ^2 x+\sin ^2 x}$
On dividing each term by $\cos ^2 x$, we get
$\sin 2 x=\frac{2 \tan x}{1+\tan ^2 x}$