Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The value of $\lim\limits_{x \to 0+} \frac{x}{p}\left[\frac{q}{x}\right]$ is

WBJEEWBJEE 2019

Solution:

$\lim\limits_{x \to 0^+} \frac{x}{p}\left(\frac{q}{x}-\left\{\frac{q}{x}\right\}\right) = \lim\limits_{x \to 0^+} \frac{q}{p} - \lim\limits_{x \to 0^+} \frac{x}{p}\left\{\frac{q}{x}\right\} = \frac{q}{p} - 0\times\left(finite\right) \left(0 \le \left\{\frac{q}{x}\right\} < 1\right) = \frac{q}{p}$