Q.
The value of $k$ so that the function $f(x) =
\begin{cases}
\frac{x^{4}-256}{x-4}, & \text{if $x \neq 4$ } \\[2ex]
k, & \text{if $x=4$ }
\end{cases}$
is continuous at $x = 4$ is
Continuity and Differentiability
Solution: